看航天员返回或科幻电影,返回舱总像火球般通红。表面温度能达到1600-1800℃
看航天员返回或科幻电影,返回舱总像火球般通红。表面温度能达到1600-1800℃,最高甚至超2000℃,但火箭升空时顶多冒点白烟,根本没有灼烧痕迹。这不是设计差别,而是飞行状态完全不同。返回时的高温,主要不是空气摩擦,而是“激波加热”。飞船返回速度超11公里/秒,是音速的30倍,比子弹快几十倍。高速撞向大气层时,前方空气被急剧压缩,来不及散开就形成高温高压的“激波”。激波锋面温度能达5300℃,包裹着返回舱传递热量。而且返回是从空气稀薄的太空,落到越来越稠密的低空。地球引力不断加速,速度越降越快,空气越密,高温集中爆发。更特别的是返回时会经历“黑障区”。高温让空气分子电离,形成等离子体包裹飞船。这段时间飞船和地面通信完全中断,通常持续3-6分钟,全靠预设程序飞行。这也是返回过程中最关键的风险点之一。发射时的情况正好相反,火箭速度是慢慢加上去的。刚开始每秒才几百米,就算到大气层边缘,速度也远低于返回时。低速状态下,就算空气稠密,也没法压缩形成强激波,产热自然很少。等火箭速度提上来,已经飞到空气稀薄的高空,热量没地方聚集,所以看不到高温灼烧的样子。返回舱能扛住高温,全靠特殊的热防护系统。表面的烧蚀材料遇到高温会慢慢分解、升华。通过相变吸热和带走热量,给返回舱“降温”,就像自带一层“降温铠甲”。神舟飞船用的钝头设计也很关键,能扩大激波与表面的距离,分散热量。现在应对返回高温,有一套完整的减速流程。先靠推进舱反向点火减速,脱离轨道。进入大气层后,靠大气阻力进一步降速。到10公里高度时打开降落伞,先开引导伞,再开减速伞,最后展开主降落伞。降到距地面1公里左右,反推发动机点火,让返回舱以1-2米/秒的速度安全着陆。目前用大气层减速,仍是最经济可靠的方式。不过也有更激进的方案在试验,比如SpaceX星舰打算靠发动机反向点火,直接“硬减速”,理论上能把外壳温度压到室温。但这种方式需要多带大量燃料,成本极高,还没完全成熟。简单说,返回是“高速撞进密空气”,发射是“低速爬出密空气”。两种完全不同的飞行状态,造就了“一热一凉”的鲜明反差。信源链接:科普中国: